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Abstract: 

Considered the propagation of harmonic waves in cylindrical panels with variable thickness. To derive the equations 

of the used Virtual work. Solving boundary value problem obtained by the method orthogonal pivotal condensation 

Godunov. Dispersion curves were investigated depending on several of geometrical parameters of the system.  
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Introduction. Wave processes in the form of elastic fibers in the isotropic and anisotropic cylindrical shells of 

constant thickness are well studied [1, 2, 3]. A large number of works devoted to the dynamics of shells described by 

Timoshenko model [4, 5, 6, 7]. In [8] for the study of wave processes used asymptotic methods of wave propagation 

in a cylindrical shell with a small change in its thickness along the axis. Despite the large number of papers devoted to 

the problem of wave propagation in waveguides. 

 

The research problem of wave propagation in viscoelastic (cylindrical panel) variable thickness represents a 

significant theoretical practical interest. 

 

STATEMENT OF THE WAVE PROBLEM  

Regarded an endless a deformed a cylindrical panel with a thickness h , densities  . In the orthogonal curvilinear 

coordinate system,  z;; 21   at 0z  shell occupies the region 
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Curvature of the middle surface 0z  are equal 
R

kk
1

;0 21   respectively coordinates 21  and . 

Within the framework of hypotheses Kirchhoff - Love the variation component of the displacement vector 

)(),(),( 321 xuxuxu  panels are determined by the following relations [1, 2] 

 1,)(;)(;)( 32211 wxuzxuzuxu    

Where wu ,, – components of the displacement vector of the middle surface; 21, – rotation angles with respect to 

the normal axis 21  and . 

To derive the equations panel used Virtual work  

 2    

Where   – variation of the potential energy of the shell;   – virtual work of the inertial forces panels mass. In 

this paper V.V. Novozhilov [1], taking into account the relations (1) the deduction for the following expression based 

on the linear theory of elasticity 

  ,2 212211122211  ddNMMSTТП
F

  (3) 

where NMMS ,,,,, 2121  – forces and moments;  ,,,,, 211221  – components of deformation of the middle 

surface. In (3) we have omitted terms are of the order 
R

h
. According to [1] the tangential components of bending 

deformation of the middle surface are expressed in terms of its movement and rotation angles are normal as follows 
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(4) 

In turn, forces and moments associated with the components of the strain of defining relations arising from the 

generalized Hooke's law: 
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– modulus operator, which have the form [9].:  

        







 

t
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 (5) 

 t  – Arbitrary function of time;  tRE  – relaxation kernel; 01E  – instantaneous modulus of elasticity; Accept 

the integral terms in (5) small, then the function     ti Rett
 

 , where  t - slowly varying function of time, 

R - real constant. Next, using the procedure of freezing [10], we note the relation (5) approximate species 

      ЕiEE R

S

R

С  1 , 

 where 

   



0

cos  dR RR

C , 

   



0

cos  dR RR

C , respectively, the cosine and sine Fourier transforms core material relaxation. As an 

example, assume three viscoelastic relaxation parametric kernel     1/ tAetR t
, has a weak singularity[9].    

– Poisson's ratio. It is supposed that the inertial forces in the corners 21  and   small and compared to the other 

forces of inertia. Given this, if we neglect the inertia of the normal rotation, the virtual work of the inertial forces shell 

can be written as: 

21)(  ddwwuuhT
F

     (6) 

After substituting (3) and (6) in (2) and standard procedures for integration by parts, taking into account the 

relation (4) we obtain the equations of motion in the form of  
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Alternative boundary conditions of the free edge, or anchorage, with l,02    are the following: the free edge  

   90;0;0;0 212  QMTS ; 

rigid seal 

 100,0,0,0 2  Qwu     

Using relationships (4) and (5), (7), (8) a complete system of equations of motion can be written as eight differential 

equations Placing on the first derivatives 2 :  

wkc
u

vcTc

AS
u

A

2

1

2

2

12

;




























 ;  








22

2

2

1

2

2

2

2 ;

k
w

w
MD















; 

1

2

2

1

2

2

2

2 





 
















 Tu
с

t

u
h

S  

22

1

2

2

2

2 Qk
S

t
h

T






















         (11) 

222

1

2

2

4

1

4

2

2

2

2 Tk
Mw

D
t

w
h

Q




























;  

2

1

2

2

2

2

2 2




 







BQ

M
, 

where 

)1(12
;

)1(2

;
)1(12

;
1

3

2

3

2



















hE
B

hE
A

hE
D

h
с

 

In the case of traveling along 1  harmonic wave solutions of the boundary value problem for the system (11) with 

boundary conditions of (9) and (10) allow separation of variables. 
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where IR i   – complex natural frequency; k  – the wave number; R  – the real part of the complex 

frequency;   – density;   8..3,2,12 jz j   – function waveform. To ascertain their physical meaning of the 

case: 

1) IRR iCCVкk  ;  – Then the solution of (9) is given by a sine wave z , whose amplitude decays over 

time; 

2) RIR CViккk  ;  – Then at each point z  fluctuations established by 1  damped.  

Further assuming that both the shell edge 02   and l2  – free. After substitution of (12) in equation (11) 

and taking into account the boundary conditions (9), we have the spectral Boundary Value Problem   for a system of 

eight ordinary differential equations for the complex function form: 
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In the analysis of the dispersion parameter of harmonic waves k   assume given. 

Numerical analysis of the dispersion of normal waves in cylindrical panels  

Based on the solution of the problem (13) orthogonal sweep method of Godunov was performed numerical 

analysis of the dispersion of these waves. 

Fig. 1 and 2 shows the dependence of the real part of the complex phase velocity of the first two modes of the wave 

number for various waveguides. In all variants of calculation, the following dimensionless parameters canister 

,1E   ,1    ,25,0   1l ,  1,0;05,0;048,0  A . 

Thickness  h    varies linearly 

  212  hhh        (14) 

                                                      lhhh /12   

The solid lines in the figures correspond to the embodiments of the constant thickness )1.0( 21  hh , the dotted 

lines characterize the panel with a tapered section ( 0001.0h ). In the latter case, 1.02 h , and the 

thickness 001.01 h . Parameters constant 2k  of curvature and takes values of 
045  and 

090 . The broken line in Fig. 

1 and 2 correspond to the considered case of Kirchhoff plates with -Lave 02 k . From Figures 1 and 2 show a 

qualitative difference in the behavior of the dispersion curves of the first mode, the corresponding shell and plate. If in 

the second phase velocity curve is monotonic in the first case there is a typical maximum range in the medium, which 

is attributed to higher flexural shell severity as compared with the plate. Actual speed of the second mode, unlike the 

case of the constant thickness also generally increased with increasing curvature. At the same time, as one would 

expect, the larger curvature 2k  more slowly takes you to a site without dispersion movement  constc   with 

increasing wave number. As for the localization, it increases with increasing curvature (for sufficiently large k  for 

example, in 10k ). Moreover, this increased localization in the cylindrical panel is characteristic for both modes 

(real part of the complex velocity). With the growth parameter 2k  there is a tendency to increase speed ( RС ) flexural 

mode and reduce the rate of tensional modes. Speed damping coefficient ( IС ) bending mode decreases the rate of the 

parameters 2k  and increases the rate of decay 

  Corresponds to the torsion mode.      
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Figure.1- The dependence of the real part of the wave propagation velocity of the wave number 

CONCLUSIONS 

1. With the increase in the curvature of the cylindrical constant thickness increases the real part of the complex 

  ValCR Re  the propagation velocity of the first bending mode and decreases the speed of propagation of the 

second tensional mode.  

          2. In the case of a wedge-shaped cylindrical panel for each mode, there are limits propagation velocity with 

increasing wave number coinciding in magnitude with the corresponding velocities of normal waves in a wedge-shaped 

plate of zero curvature. In the short-range localization movement exists and increases with the curvature of the panel.  

 

Figure.2- Dependence of the real speed  RC  propagation of the wave number 
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